

Using Boolean Logic Part 1

BAT-212: BAT Logic and Programming

This material is based upon work supported by the National Science Foundation Advanced Technical Education grant program, A New Technician Training Program for Advanced Building Technologies, DUE-2000190.

The opinions, findings, and conclusions or recommendations expressed are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Using Boolean Logic Part 1© 2023 by Wake Technical Community College is licensed under CC BY-NC-SA 4.0. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ Using Boolean Logic Part 1

OBJECTIVES

Upon completion of this activity the student will be able to:

- 1. Identify physical signal values corresponding to Boolean logic values.
- 2. Use Sedona blocks to implement Boolean logic.

PARTS AND EQUIPMENT

- Sedona Application Editor from Contemporary Controls
- BAS22controller or BASemulator
- BAT Trainer

REFERENCES

- BAScontrol22 User Manual: <u>https://www.ccontrols.com/pdf/um/UM-BASC22V4.pdf</u>
- Sedona Open Control Reference Manual <u>https://www.ccontrols.com/pdf/RM-SEDONA00.pdf</u>
- BAScontrol22 User Manual: <u>https://www.ccontrols.com/pdf/um/UM-BASC22V4.pdf</u>

BACKGROUND

Today you will experiment with basic logic gates using the blocks available in the Sedona Application Editor. The basic gates are AND, OR, NOT, NAND, NOR, XOR, XNOR. The blocks available in the editor are AND, OR, NOT, and XOR. NAND, NOR, or XNOR can be formed by combining AND, OR, or XOR with a NOT. The logic blocks are found in the bottom left pane of the editor under logic. Other logic blocks available include switches and demultiplexers. You will not use these for this lab. Refer to the Sedona reference manual 2.5 for explanation of the blocks and 3.1 - 3.10 for examples of use of the basic gate blocks.

PROCEDURES

Building the circuit:

You will need two input circuits and one output circuit. Connect two binary inputs from the controller with the toggle switches on the trainer. Test which poles on the switches are connected and disconnected by the switch action. You may use either the UI inputs or the specialized binary inputs. Drive lamp of the trainer with a binary output from the controller. Note that the circuit for the binary output requires that you wire a power source in series with the relay. 24 volts is available on the trainer. The schematic is included below. The controller binary output is the switch in the schematic. So BO1A should go to the 24-volt supply from the trainer, and BO1B should go to the connection for the lamp. Verify that your circuits make sense given the electrical specifications for I/O given in the controller user manual. Include specifications in your lab report. Include photos of your wiring in your lab report. This wiring setup will be used for each of the 9 logic tests below.

Building and testing the logic:

For each exercise:

- Build the logic needed in Sedona.
- Take at least one screen snip of the working wiresheet with a one sentence description of the state shown for each snip.
- Fill in the tables provided for all input combinations. Note that for Boolean values, 0 is equivalent to false and 1 is equivalent to true.
- Include all documentation in your lab report. Screen snips, descriptions and tables should be included in your lab report.

DMM	Volt	Sedona		
Measu	rement	block value		
А	Х	А	Х	
		0		
		1		

1.	NOT(BI1):	A'=X
----	-----------	------

2. BI1 AND BI2: AB=X

DMM Voltage			Sedona block value		
Measu	rement				
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

3. BI1 OR BI2: A+B=X

DMM Voltage			Sedona block value		
Measur	rement				
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

4. NOT(BI1) AND NOT(BI2)

DMM Voltage			Sedona block value		
Measur	ement				
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

5. NOT(BI1) OR NOT(BI2)

DMM Voltage			Sedona block value		
Measurement					
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

6. NOT(BI1AND BI2)

DMM Voltage			Sedona block value		
Measur	rement				
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

7. NOT(BI1OR BI2)

DMM Voltage			Sedona block value		
Measur	rement				
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

8. BI1 XOR BI2

DMM Voltage			Sedona block value		
Measurement					
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

9. NOT(BI1 XOR BI2)

DMM Voltage			Sedona block value		
Measur	ement				
А	В	Х	А	В	Х
			0	0	
			0	1	
			1	0	
			1	1	

Questions:

Include a paragraph in your lab report that responds to the following questions.

Compare the results of tables 4 and 6. Are they equivalent?

Compare the results of tables 5 and 7. Are they equivalent?

Compare the results of tables 4 and 7. Are they equivalent?

Compare the results of tables 5 and 6. Are they equivalent?

For the tables that are equivalent, write the Boolean equations to show that relationship.

Also, make note of anything that surprised you or was counter-intuitive.